Novel computational methods for high-dimensional stochastic sensitivity analysis

نویسندگان

  • Sharif Rahman
  • Xuchun Ren
چکیده

This paper presents three new computational methods for calculating design sensitivities of statistical moments and reliability of high-dimensional complex systems subject to random input. The first method represents a novel integration of the polynomial dimensional decomposition (PDD) of a multivariate stochastic response function and score functions. Applied to the statistical moments, the method provides mean-square convergent analytical expressions of design sensitivities of the first two moments of a stochastic response. The second and third methods, relevant to probability distribution or reliability analysis, exploit two distinct combinations built on PDD: the PDD-saddlepoint approximation (SPA) or PDD-SPA method, entailing SPA and score functions; and the PDD-Monte Carlo simulation (MCS) or PDD-MCS method, utilizing the embedded MCS of the PDD approximation and score functions. For all three methods developed, the statistical moments or failure probabilities and their design sensitivities are both determined concurrently from a single stochastic analysis or simulation. Numerical examples, including a 100-dimensional mathematical problem, indicate that the new methods developed provide not only theoretically convergent or accurate design sensitivities, but also computationally efficient solutions. A practical example involving robust design optimization of a three-hole bracket illustrates the usefulness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel computational methods for stochastic design optimization of high-dimensional complex systems

The primary objective of this study is to develop new computational methods for robust design optimization (RDO) and reliability-based design optimization (RBDO) of high-dimensional, complex engineering systems. Four major research directions, all anchored in polynomial dimensional decomposition (PDD), have been defined to meet the objective. They involve: (1) development of new sensitivity ana...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Second order sensitivity analysis for shape optimization of continuum structures

This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...

متن کامل

Global sensitivity analysis by polynomial dimensional decomposition

This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014